
1.

About this Book

sidebar!

What I’m Going to Do With the
Massive Proceeds from this Book

Anyone who’s written a book can tell you

how easily an author is distracted by visions

of grandeur. In my experience, I stop twice

for each paragraph, and four times for each

panel of a comic, just to envision the wealth

and prosperity that this book will procure for

my lifestyle. I fear that the writing of this

book will halt altogether to make way for the

armada of SUVs and luxury towne cars that

2.

Kon’nichi wa, Ruby

1. Opening This Book

Pretend that you’ve opened this book (although you probably have opened this book), just to find a huge onion right in the

middle crease of the book. (The manufacturer of the book has included the onion at my request.)

So you’re like, “Wow, this book comes with an onion!” (Even if you don’t particularly like onions, I’m sure you can appreciate

the logistics of shipping any sort of produce discreetly inside of an alleged programming manual.)

Then you ask yourself, “Wait a minute. I thought this was a book on Ruby, the incredible new programming language from

Japan. And although I can appreciate the logistics of shipping any sort of produce discreetly inside of an alleged programming

manual: Why an onion? What am I supposed to do with it?”

No. Please don’t puzzle over it. You don’t need to do anything with the onion. Set the onion aside and let it do something with

you.

I’ll be straight with you. I want you to cry. To weep. To whimper sweetly. This book is a poignant guide to Ruby. That means

code so beautiful that tears are shed. That means gallant tales and somber truths that have you waking up the next morning in

the arms of this book. Hugging it tightly to you all the day long. If necessary, fashion a makeshift hip holster for Why’s

(Poignant) Guide to Ruby, so you can always have this book’s tender companionship.

You really must sob once. Or at least sniffle. And if not, then the onion will make it all happen for you.

2. The Dog Story

So try this first bit of poignancy on for size:

One day I was walking down one of those busy roads covered with car dealerships (this

was shortly after my wedding was called off) and I found an orphaned dog on the road.

A wooly, black dog with greenish red eyes. I was kind of feeling like an orphan myself,

so I took a couple balloons that were tied to a pole at the dealership and I relocated

them to the dog’s collar. Then, I decided he would be my dog. I named him Bigelow.

We set off to get some Milkbones for Bigelow and, afterwards, head over to my place,

are blazing away in my head.

Rather than stop my production of the

(Poignant) Guide, I’ve reserved this space as

a safety zone for pouring my empty and vain

wishes.

Today I was at this Italian restaraunt,

Granado’s, and I was paying my bill.

Happened to notice (under glass) a bottle of

balsamic vinegar going for $150. Fairly

small. I could conceal it in my palm. Aged

twenty-two years.

I’ve spent a lot of time thinking about that

bottle. It is often an accessory in some of

these obsessive fantasies. In one fantasy, I

walk into the restaraunt, toss a stack of

greenery on the counter and earnestly say to

the cashier, “Quick! I have an important

salad to make!”

In another, related fantasy, I am throwing

away lettuce. Such roughage isn’t befitting of

my new vinegar. No, I will have come to a

point where the fame and the aristocracy will

have corrupted me to my core. My new

lettuce will be cash. Cold, hard cash, Mrs.

Price.

Soon, I will be expending hundreds for a

block of myzithra cheese.

My imaginations have now gone beyond

posessions, though. Certainly, I have

thought through my acquisition of grecian

urns, motorcades, airlines, pyramids,

dinosaur bones. Occassionally I’ll see

wind-tossed cities on the news and I’ll jot

down on my shopping list: Hurricane.

But, now I’m seeing a larger goal. Simply

put: what if I amassed such a fortune that

the mints couldn’t print enough to keep up

with my demand? So, everyone else would

be forced to use Monopoly money as actual

currency. And you would have to win in

Monopoly to keep food on the table. These

would be some seriously tense games. I

mean you go to mortgage St. James Place

and your kids start crying. In addition, I

think you’ll begin to see the end of those who

choose to use the Free Parking square as the

underground coffers for city funds.

where we could sit in recliners and listen to Gorky’s Zygotic Mynci. Oh, and we’d also

need to stop by a thrift store and get Bigelow his own recliner.

But Bigelow hadn’t accepted me as his master. So five minutes later, the stupid dog

took a different crosswalk than I did and I never caught up. So whereas he had

previously only been lost once, he was now lost twice. I slowed my pace towards the

life of Milkbones and an extra recliner. I had a dog for five minutes.

Stupid Benedict Arnold of a dog. I sat on a city bench and threw pinecones at a statue

of three sheep crossing a bridge. After that, I wept for hours. The tears just came. Now

there’s a little something poignant to get you started.

I wonder where he went with all those balloons. That crazy dog must have looked like

a party with legs.

It wasn’t much later that I pulled my own Bigelow. I printed out a bunch of pages on

Ruby. Articles found around the Web. I scanned through them on a train ride home

one day. I flipped through them for five minutes and then gave up. Not impressed.

I sat, staring out the window at the world, a life-sized blender mixing graffiti and iron

smelts before my eyes. This world’s too big for such a a little language, I thought.

Poor little thing doesn’t stand a chance. Doesn’t have legs to stand on.

Doesn’t have arms to swim.

And yet, there I was. One little man on a flimsy little train (and I even still had a baby

tooth to lose at the time) out of billions of people living on a floating blue rock. How

can I knock Ruby? Who’s to say that I’m not going to happen to choke on my cell

phone and die later that evening. Why’s dead, Ruby lives on.

The gravestone:

What’s in his trachea? Oh, look, a Nokia!

Just my luck. Finally get to have a good, long sleep underground, only to be constantly

disturbed by Pachelbel’s Canon going off in my stomach.

3. The Red Sun Rises

So, now you’re wondering why I changed my mind about Ruby. The quick answer is:

we clicked.

Like when you meet Somebody in college and they look like somebody who used to hit

you in the face with paintbrushes when you were a kid. And so, impulsively, you

conclude that this new Somebody is likely a non-friend. You wince at their hair. You

hang up phones loudly during crucial moments in their anecdotes. You use your pogo

stick right there where they are trying to walk!

Six months later, somehow, you and Somebody are sitting at a fountain having a

perfectly good chat. Their face doesn’t look so much like that childhood nemesis.

You’ve met the Good Twin. You clicked.

You’ve got to hand it to fun money, though.

Fake money rules. You can get your hands

on it so quickly. For a moment, it seems like

you’re crazy rich. When I was a kid, I got

with some of the neighborhood kids and we

built this little Tijuana on our street. We

made our own pesos and wore sombreros

and everything!

One kid was selling hot tamales for two

pesos each. Two pesos! Did this kid know

that the money was fake? Was he out of his

mind? Who invited this kid? Didn’t he know

this wasn’t really Tijuana? Maybe he was

really from Tijuana! Maybe these were real

pesos! Let’s go make more real pesos!

I think we even had a tavern where you

could get totally hammered off Kool-Aid.

There’s nothing like a bunch of kids

stumbling around, mumbling incoherently

with punchy red clown lips.

sidebar!

So whereas I should probably be pounding your teeth in with hype about Ruby and the

tightly-knit cadre of pertinent ancronyms that accompany it everywhere (whetting the

collective whistles of your bosses and their bosses’ bosses), instead I will just let you

coast. I’ll let you freefall through some code, interjecting occassionally with my own

heartfelt experiences. It’ll be quite easy, quite natural.

I should offer you some sort of motivation, though. So, Smotchkkiss, I’m going to give

my three best reasons to learn Ruby and be done with it.

Brain health.

Vitamin R. Goes straight to the head. Ruby will teach you to express

your ideas through a computer. You will be writing stories for a

machine.

Creative skills, people. Deduction. Reason. Nodding intelligently. The

language will become a tool for you to better connect your mind to the

world. I’ve noticed that many experienced users of Ruby seem to be

clear thinkers and objective. (In contrast to: heavily biased and

coarse.)

1.

One man on one island.

Ruby was born in Japan. Which is freaky. Japan is not known for its

software. And since programming languages are largely written in

English, who would suspect a language to come from Japan?

And yet, here we have Ruby. Against the odds, Yukihiro Matsumoto

created Ruby on February 24, 1993. For the past ten years, he has

steadily brought Ruby to a global audience. It’s triumphant and noble

and all that. Support diversity. Help us tilt the earth just a bit.

2.

Free.

Using Ruby costs nothing. The code to Ruby itself is open for all of the world to inhale/exhale. Heck, this book is free.

It’s all part of a great, big giveaway that should have some big hitch to it.

You’d think we’d make you buy vacuums or timeshare or fake Monets. You’d think there’d be a 90 minute presentation

where the owner of the company comes out at the end and knuckles you into sealing the deal.

Nope, free.

3.

With that, it’s time for the book to begin. You can now get out your highlighter and start dragging it along each captivating

word from this sentence on. I think I have enough hairspray and funny money on my person to keep me sustained until the

final page.

4. How Books Start

Now, if you ever have read a book, you know that no book can properly start without an exorbitant amount of synergy. Yes,

synergy. Maybe you didn’t know this. Synergy means that you and I are supposed to cooperate to make this a great reading

experience.

We start off the book by getting along well in the Introduction. This togetherness, this synergy, propels us through the book,

with me guiding you on your way. You give me a reassuring nod or snicker to indicate your progress.

I’m Peter Pan holding your hand. Come on, Wendy! Second star to the right and on till morning.

One problem here. I don’t get along well with people. I don’t hold hands very well.

Any of my staff will tell you. At the Opening Ceremonies of This Book (a catered event with stadium seating), I discovered that

the cucumber sandwiches weren’t served in tea towels. As a result, the butter hadn’t set with the cucumbers right… Anyways, I

made a big scene and set fire to some of the advertising trucks outside. I smashed this spotlight to pieces and so on. I had this

loud maniacal laughing thing going on deep into that night. It was a real mess.

But, since I don’t get along well with people, I hadn’t invited anyone but myself to the Opening Ceremonies of This Book. So it

wasn’t really that embarassing. I kept it under wraps and no one found out about the whole ordeal.

So you’ve got to know that synergy doesn’t actually mean synergy in this book. I can’t do normal synergy. No, in this

book, synergy means cartoon foxes. What I’m saying is: this book will be starting off with an exorbitant amount of

cartoon foxes.

And I will be counting on you to turn them into synergy.

3.

A Quick (and Hopefully Painless)
Ride Through Ruby (with Cartoon

Foxes)

Yeah, these are the two. My asthma’s kickin in so I’ve got to go take a puff of medicated air just now. Be with you in a moment.

I’m told that this chapter is best accompanied by a rag. Something you can mop your face with as the sweat pours off your face.

Indeed, we’ll be racing through the whole language. Like striking every match in a box as quickly as can be done.

1. Language and I MEAN Language

My conscience won’t let me call Ruby a computer language. That would imply that the language works primarily on the

computer’s terms. That the language is designed to accomodate the computer, first and foremost. That therefore, we, the

coders, are foreigners, seeking citizenship in the computer’s locale. It’s the computer’s language and we are translators for the

world.

But what do you call the language when your brain begins to think in that language? When you start to use the language’s own

words and colloquialisms to express yourself. Say, the computer can’t do that. How can it be the computer’s language? It is

ours, we speak it natively!

We can no longer truthfully call it a computer language. It is coderspeak. It is the language of our thoughts.

Read the following aloud to yourself.

5.times { print "Odelay!" }

In English sentences, punctuation (such as periods, exclamations, parentheses) are silent. Punctuation adds meaning to

words, helps give cues as to what the author intended by a sentence. So let’s read the above as: Five times print “Odelay!”.

Which is exactly what this small Ruby program does. Beck’s mutated Spanish exclamation will print five times on the

computer screen.

Read the following aloud to yourself.

exit unless "restaurant".include? "aura"

Here we’re doing a basic reality check. Our program will exit (the program will end) unless the word restaurant contains

(or includes) the word aura. Again, in English: Exit unless the word restaurant includes the word aura.

Ever seen a programming language use question marks so effectively? Ruby uses some punctuation, such as exclamations and

question marks, to enhance readability of the code. We’re asking a question in the above code, so why not make that apparent?

Read the following aloud to yourself.

['toast', 'cheese', 'wine'].each { |food| print food.capitalize }

While this bit of code is less readable and sentence-like than the previous examples, I’d still encourage you to read it aloud.

While Ruby may sometimes read like English, it sometimes reads as a shorter English. Fully translated into English, you might

read the above as: With the words ‘toast’, ‘cheese’, and ‘wine’: take each food and print it capitalized.

The computer then courteously responds: Toast , Cheese and Wine .

sidebar!

Concerning Commercial Uses of the
(Poignant) Guide

This book is released under a Creative

Commons license which allows unlimited

commercial use of this text. Basically, this

means you can sell all these bootleg copies of

my book and keep the revenues for yourself.

I trust my readers (and the world around

them) to rip me off. To put out some crappy

Xerox edition with that time-tested clipart of

praying hands on the cover.

Guys, the lawsuits just ain’t worth the

headache. So I’m just going to straight up

endorse authorized piracy, folks. Anybody

who wants to read the book should be able to

read it. Anybody who wants to market the

book or come up with special editions, I’m

flattered.

Why would I want the $$$? IGNORE ALL

OTHER SIDEBARS: I’ve lost the will to be a

rich slob. Sounds inhuman, but I like my

little black-and-white television. Also my

hanging plastic flower lamp. I don’t want to

be a career writer. Cash isn’t going inspire

me. Pointless.

So, if money means nothing to the lucky

stiff, why rip me off when you could co-opt

shady business practices to literally crush my

psyche and leave me wheezing in some sooty

iron lung? Oh, and the irony of using my

own works against me! Die, Poignant Boy!

To give you an idea of what I mean, here are

a few underhanded concepts that could

seriously kill my willpower and force me to

reconsider things like existence.

IDEA ONE: BIG TOBACCO

Buy a cigarette company. Use my cartoon

foxes to fuel an aggressive ad campaign.

At this point, you’re probably wondering how these words actually fit together. Smotchkkiss is wondering what the dots and

brackets mean. I’m going to discuss the various parts of speech next.

All you need to know thus far is that Ruby is basically built from sentences. They aren’t exactly English sentences. They are

short collections of words and punctuation which encompass a single thought. These sentences can form books. They can form

pages. They can form entire novels, when strung together. Novels that can be read by humans, but also by computers.

2. The Parts of Speech

Just like the white stripe down a skunk’s back and the winding, white train of a bride,

many of Ruby’s parts of speech have visual cues to help you identify them. Punctuation

and capitalization will help your brain to see bits of code and feel intense recognition.

Your mind will frequently yell Hey, I know that guy! You’ll also be able to

name-drop in conversations with other Rubyists.

Try to focus on the look of each of these parts of speech. The rest of the book will detail

the specifics. I give short descriptions for each part of speech, but you don’t have to

understand the explanation. By the end of this chapter, you should be able to recognize

every part of a Ruby program.

Variables

Any plain, lowercase word is a variable in ruby. Variables may consist of letters, digits

and underscores.

x , y , banana2 or phone_a_quail are examples.

Variables are like nicknames. Remember when everyone used to call you Stinky Pete?

People would say, “Get over here, Stinky Pete!” And everyone miraculously knew that

Stinky Pete was you.

With variables, you give a nickname to something you use frequently. For instance,

let’s say you run an orphanage. It’s a mean orphanage. And whenever Daddy

Warbucks comes to buy more kids, we insist that he pay us one-hundred

twenty-one dollars and eight cents for the kid’s teddy bear, which the kid has

become attached to over in the darker moments of living in such nightmarish custody.

teddy_bear_fee = 121.08

Later, when you ring him up at the cash register (a really souped-up cash register

which runs Ruby!), you’ll need to add together all his charges into a total.

total = orphan_fee + teddy_bear_fee + gratuity

Those variable nicknames sure help. And in the seedy underground of child sales, any

help is appreciated I’m sure.

Here’s a billboard for starters:

Make it obvious that you’re targeting

children and the asthmatic. Then, once

you’ve got everyone going, have the truth

people do an expose on me and my farm of

inky foxes.

Sensible Hipster Standing on Curb in

Urban Wilderness: He calls himself the

lucky stiff.

(Pulls aside curtain to reveal grey corpse on a

gurney.)

Hipster: Some stiffs ain’t so lucky.

(Erratic zoom in. Superimposed cartoon foxes for

subliminal Willy Wonka mind trip.)

Yo. Why you gotta dis Big Smokies like dat,

Holmes?

IDEA TWO: HEY, FIRING SQUAD

Like I said, start selling copies of my book,

but corrupt the text. These altered copies

would contain numerous blatant (and

libelous) references to government agencies,

such as the U.S. Marshals and the Pentagon.

You could make me look like a complete

traitor. Like I have all these plans to, you

know, kill certain less desirable members of

the U.S. Marshals or the Pentagon.

Not that there are any less desirable

members of the U.S. Marshals or the

Pentagon. Yeah, I didn’t mean it like that.

Oh, crap.

Oh, crap. Oh, crap. Oh, crap.

Turn off the lights. Get down.

Numbers

The most basic type of number is an integer, a series of digits which can start

with a plus or minus sign.

1 , 23 , and -10000 are examples.

Commas are not allowed in numbers, but underscores are. So if you feel the need to

mark your thousands so the numbers are more readable, use an underscore.

population = 12_000_000_000

Decimal numbers are called floats in Ruby. Floats consist of numbers with a

decimal place or scientific notation.

3.14 , -808.08 and 12.043e-04 are examples.

Strings

Strings are any sort of characters (letters, digits, punctuation) surrounded by quotes.

Both single and double quotes are used to create strings.

"sealab" , '2021' , or "These cartoons are hilarious!"

are examples.

When you enclose characters in quotes, they are stored together as a single string.

Think of a reporter who is jotting down the mouthnoises of a rambling celebrity. “I’m a

lot wiser,” says Avril Lavigne. “Now I know what the business is like—what you have to

do and how to work it.”

 avril_quote = "I'm a lot wiser. Now I know

 what the business is like -- what you have

 to do and how to work it."

So, just as we stored a number in the teddy_bear_fee variable, now we’re storing a

collection of characters (a string) in the avril_quote variable. The reporter sends

this quote to the printers, who just happen to use Ruby to operate their printing press.

IDEA THREE: BILLBOARDS,

PART II

How about making fun of asthmatics

directly?

IDEA FOUR: ALEC BALDWIN

Adapt the book into a movie. And since, you

know, I’m a character in this book, you could

get someone like Alec Baldwin to play me.

Someone who’s at a real lowpoint in his

career.

You could make it seem like I did tons of

drugs. Like I was insane to work with. Like I

kept firing people and locking them in the

scooter room and making them wear outfits

made of bread. Yeah, like I could actually be

baking people into the outfits.

You could have this huge mold that I strap

people into. Then, I pour all the dough on

them and actually bake them until the bread

has risen and they’ve almost died. And when

the television crews come and I’m on Good

Morning America, they’ll ask, “So, how many

people have you employed in the production

of your book?” And I’d respond, “A baker’s

dozen!” and erupt into that loud maniacal

laughing that would force audience members

to cup their hands over their ears.

Of course, in the throes of my insanity, I

would declare war on the world. The bread

people would put up quite a fight. Until the

U.S. Marshals (or the Pentagon) engineer a

giant robotic monkey brain (played by Burt

Lancaster) to come after me.

Here’s where you’ll make me look

completely lame. Not only will I sacrifice all

 print oprah_quote

 print avril_quote

 print ashlee_simpson_debacle

Symbols

Symbols are words that look just like variables. Again, they may contain letters, digits,

or underscores. But they start with a colon.

:a , :b , or :ponce_de_leon are examples.

Symbols are lightweight strings. Usually, symbols are used in situations where you

need a string but you won’t be printing it to the screen.

You could say a symbol is a bit easier on the computer. It’s like an antacid. The colon

indicates the bubbles trickling up from your computer’s stomach as it digests the

symbol. Ah. Sweet, sweet relief.

Constants

Constants are words like variables, but constants are capitalized. If variables are

the nouns of Ruby, then think of constants as the proper nouns.

Time , Array or Bunny_Lake_is_Missing are examples.

In English, proper nouns are capitalized. The Empire State Building. You can’t just

move The Empire State Building. You can’t just decide that the Empire State Building

is something else. Proper nouns are like that. They refer to something very specific and

of the bread people (the Starchtroopers) to

save myself, not only will I surrender to the

great monkey brain like a coward, but when

I narrowly escape, I’ll yell at the audience.

Screaming insistently that it’s MY movie and

no one should see it any more, I’ll rip the

screen in half and the film projector will spin

with its reel flapping in defeat. And that will

be the end of the movie. People will be so

pissed.

Now, I’ve got to thinking. See, and actually,

Alec Baldwin did a decent voiceover in The

Royal Tenenbaums. His career might be

okay. You might not want to use him. He

might not do it.

Tell ya what. I’ll play the part. I’ve made a

career out of lowpoints.

sidebar!

usually don’t change over time.

In the same way, constants can’t be changed after they are set.

EmpireStateBuilding = "350 5th Avenue, NYC, NY"

If we try to change the constant, Ruby will complain to us. Such things are frowned

upon.

Methods

If variables and constants are the nouns, then methods are the verbs. Methods are usually attached to the end of variables and

constants by a dot. You’ve already seen methods at work.

front_door.open

In the above, open is the method. It is the action, the verb. In some cases, you’ll see actions chained together.

front_door.open.close

We’ve instructed the computer to open the front door and then immediately close it.

front_door.is_open?

The above is an action as well. We’re instructing the computer to test the door to see if it’s open. The method could be called

Door.test_to_see_if_its_open , but the is_open? name is succinct and just as correct. Both

exclamation marks and question marks may be used in method names.

Method arguments

A method may require more information in order to perform its action. If we want the computer to paint the door, we should

provide a color as well.

Method arguments are attached to the end of a method. The arguments are usually surrounded by parentheses and

separated by commas.

front_door.paint(3, :red)

The above paints the front door 3 coats of red.

Think of it as an inner tube the method is pulling along, containing its extra instructions. The parentheses form the wet, round

edges of the inner tube. The commas are the feet of each argument, sticking over the edge. The last argument has its feet

tucked under so they don’t show.

Like a boat pulling many inner tubes, methods with arguments can be chained.

front_door.paint(3, :red).dry(30).close()

The above paints the front door 3 coats of red, dries for 30 minutes, and closes the door. Even though the last method has no

arguments, you can still put parentheses if you like. There is no use dragging an empty inner tube, so the parentheses are

normally dropped.

Some methods (such as print) are kernel methods. These methods are used throughout Ruby. Since they are so common,

you won’t use the dot.

print "See, no dot."

Class methods

Like the methods described above (also called instance methods), class methods are usually attached after variables and

constants. Rather than a dot, a double colon is used.

Door::new(:oak)

As seen above, the new class method is most often used to create things. In the above example, we’re asking Ruby to make a

new oak door for us. Of course, Ruby has to have an understanding of how to make a door—as well as a wealth of timber,

lumberjacks, and those long, wiggily, two-man saws.

Global variables

Variables which begin with a dollar sign are global.

$x , $1 , $chunky and $CHunKY_bACOn are examples.

Most variables are rather temporary in nature. Some parts of your program are like little houses. You walk in and they have

their own variables. In one house, you may have a dad that represents Archie, a travelling salesman and skeleton collector.

In another house, dad could represent Peter, a lion tamer with a great love for flannel. Each house has its own meaning for

dad .

With global variables, you can be guaranteed that the variable is the same in every little house. The dollar sign is very

appropriate. Every American home respects the value of the dollar. We’re crazy for the stuff. Try knocking on any door in

America and hand them cash. I can guarantee you won’t get the same reaction if you knock on a door and offer Peter, a lion

tamer with a great love for flannel.

Global variables can be used anywhere in your program. They never go out of sight.

Instance variables

Variables which begin with an at symbol are instance variables.

@x , @y , and @only_the_chunkiest_cut_of_bacon_I_have_ever_seen are

examples.

These variables are often used to define the attributes of something. For example, you might provide Ruby with the width of

the front_door by setting the @width variable inside that front_door . Instance variables are used to

define characteristics of a single object in Ruby.

Think of the at symbol as meaning attribute.

Class variables

Variables which begin with double at symbols are class variables.

@@x , @@y , and @@i_will_take_your_chunky_bacon_and_raise_you_two are

examples.

Class variables, too, are used to define attributes. But rather than defining an attribute for a single object in Ruby, class

variables give an attribute to many related objects in Ruby. If instance variables set attributes for a single front_door ,

then class variables set attributes for everything that is a Door .

Think of the double at prefix as meaning attribute all. Additionally, you can think of a swarm of AT-ATs from Star

Wars, which are all commanded by Ruby. You change a class variable and not just one changes, they all change.

Blocks

Any code surrounded by curly braces is a block.

2.times { print "Yes, I've used chunky bacon in my examples, but never

again!" } is an example.

With blocks, you can group a set of instructions together so that they can be passed around your program. The curly braces

give the appearance of crab pincers that have snatched the code and are holding it together. When you see these two pincers,

remember that the code inside has been pressed into a single unit.

It’s like one of those little Hello Kitty boxes they sell at the mall that’s stuffed with tiny pencils and microscopic paper, all

crammed into a glittery transparent case that can be concealed in your palm for covert stationary operations. Except that

blocks don’t require so much squinting.

The curly braces can also be traded for the words do and end, which is nice if your block is longer than one line.

 loop do

 print "Much better."

 print "Ah. More space!"

 print "My back was killin' me in those crab pincers."

 end

Block arguments

Block arguments are a set of variables surrounded by pipe characters and separated by commas.

|x| , |x,y| , and |up, down, all_around| are examples.

Block arguments are used at the beginning of a block.

{ |x,y| x + y }

In the above example, |x,y| are the arguments. After the arguments, we have a bit of code. The expression x + y

adds the two arguments together.

I like to think of the pipe characters as representing a tunnel. They give the appearance of a chute that the variables are sliding

down. (An x goes down spread eagle, while the y neatly crosses her legs.) This chute acts as a passageway between blocks

and the world around them.

Variables are passed through this chute (or tunnel) into the block.

Ranges

A range is two values surrounded by parentheses and separated by an ellipsis (in the form of two or three dots).

(1..3) is a range, representing the numbers 1 through 3.

('a'..'z') is a range, representing a lowercase alphabet.

Think of it as an accordion which has been squeezed down for carrying. (Sure, you can build a great sense of self-worth by

carrying around an unfolded accordion, but sometimes a person needs to wallow in self-doubt, carefully concealing the

squeeze-box.) The parentheses are the handles on the sides of a smaller, handheld accordion. The dots are the chain, keeping

the folds tightly closed.

Normally, only two dots are used. If a third dot is used, the last value in the range is excluded.

(0...5) represents the numbers 0 through 4.

When you see that third dot, imagine opening the accordion slightly. Just enough to let one note from its chamber. The note is

that end value. We’ll let the sky eat it.

Arrays

An array is a list surrounded by square brackets and separated by commas.

[1, 2, 3] is an array of numbers.

['coat', 'mittens', 'snowboard'] is an array of strings.

Think of it as a caterpillar which has been stapled into your code. The two square brackets are staples which keep the

caterpillar from moving, so you can keep track of which end is the head and which is the tail. The commas are the caterpillar’s

legs, wiggling between each section of its body.

Once there was a caterpillar who had commas for legs. Which meant he had to allow a literary pause after each step. The other

caterpillars really respected him for it and he came to have quite a commanding presence. Oh, and talk about a philanthropist!

He was notorious for giving fresh leaves to those less-fortunate.

Yes, an array is a collection of things, but it also keeps those things in a specific order.

Hashes

A hash is a dictionary surrounded by curly braces. Dictionaries match words with their definitions. Ruby does so with

arrows made from an equals sign, followed by a greater-than sign.

{'a' => 'aardvark', 'b' => 'badger'} is an example.

This time, the curly braces represent little book symbols. See how they look like little, open books with creases down the

middle? They represent opening and closing our dictionary.

Imagine our dictionary has a definition on each of its pages. The commas represent the corner of each page, which we turn to

see the next definition. And on each page: a word followed by an arrow pointing to the definition.

 {

 'name' => 'Peter',

 'profession' => 'lion tamer',

 'great love' => 'flannel'

 }

I’m not comparing hashes to dictionaries because you can only store definitions in a hash. In the example above, I stored

personal information for Peter, the lion tamer with a great love for flannel. Hashes are like dictionaries because they can be

very easy to search through.

Unlike arrays, the items in a hash are not kept in a specific order.

Regular Expressions

A regular expression (or regexp) is a set of characters surrounded by slashes.

/ruby/ , /[0-9]+/ and /^\d{3}-\d{3}-\d{4}/ are examples.

Regular expressions are used to find words or patterns in text. The slashes on each side of the expression are pins.

Imagine if you had a little word with pins on both side and you held it over a book. You pass the word over the book and when

it gets near a matching word, it starts blinking. You pin the regular expression onto the book, right over the match and it glows

with the letters of the matching word.

Oh, and when you poke the pins into the book, the paper sneezes, reg-exp!

Regular expressions are much faster than passing your hand over pages of a book. Ruby can use a regular expression to search

volumes of books very quickly.

Operators

You’ll use the following list of operators to do math in Ruby or to compare things. Scan over the list, recognize a few. You

know, addition + and subtraction - and so on.

 ** ! ~ * / % + - &

 << >> | ^ > >= < <= <=>

 || != =~ !~ && += -= == ===

 not and or

Keywords

sidebar!

Seven Moments of Zen from My Life

8 years old. Just laying in bed, thinking.
And I realize. There’s nothing stopping
me from becoming a child dentist.

1.

21. Found a pencil on the beach.
Embossed on it: I cherish serenity.
Tucked it away into the inside breast
pocket of my suit jacket. Watched the
waves come and recede.

2.

22. Found a beetle in my bathroom that
was just about to fall into a heating vent.
Swiped him up. Tailored him a little
backpack out of a leaf and a thread. In
the backpack: a skittle and a AAA battery.
That should last him. Set him loose out
by the front gate.

3.

Three years of age. Brushed aside the
curtain. Sunlight.

4.

14. Riding my bike out on the pier with
my coach who is jogging behind me as
the sun goes down right after I knocked
out Piston Honda in the original
Nintendo version of Mike Tyson’s
Punch-Out.

5.

11. Sick. Watching Heathcliff on
television. For hours, it was Heathcliff.

6.

Ruby has a number of built-in words, imbued with meaning. These words cannot be used as variables or changed to suit your

purposes. Some of these we’ve already discussed. They are in the safe house, my friend. You touch these and you’ll be served

an official syntax error.

 alias and BEGIN begin break case class def defined

 do else elsif END end ensure false for if

 in module next nil not or redo rescue retry

 return self super then true undef unless until when

 while yield

Good enough. These are the illustrious members of the Ruby language. We’ll be having quite the junket for the next three

chapters, gluing these parts together into sly bits of (poignant) code.

I’d recommend skimming all of the parts of speech once again. Give yourself a broad view of them. I’ll be testing your metal in

the next section.

3. If I Haven't Treated You Like a Child Enough
Already

I’m proud of you. Anyone will tell you how much I brag about you. How I go on and on

about this great anonymous person out there who scrolls and reads and scrolls and

reads. “These kids,” I tell them. “Man, these kids got heart. I never…” And I can’t even

finish a sentence because I’m absolutely blubbering.

And my heart glows bright red under my filmy, translucent skin and they have to

administer 10cc of JavaScript to get me to come back. (I respond well to toxins in the

blood.) Man, that stuff will kick the peaches right out your gills!

So, yes. You’ve kept up nicely. But now I must begin to be a brutal schoolmaster. I

need to start seeing good marks from you. So far, you’ve done nothing but move your

eyes around a lot. Okay, sure, you did some exceptional reading aloud earlier. Now we

need some comprehension skills here, Smotchkkiss.

Say aloud each of the parts of speech used below.

5.times { print "Odelay!" }

You might want to even cover this paragraph up while you read, because your eyes

might want to sneak to the answer. We have a number 5 , followed by a method

And he was able to come right up close to
my face. His head spun toward me. His
face pulsed back and forth, up close, then
off millions of miles away. Sound was
gone. In fractions of a second, Heathcliff
filled the universe, then blipped off to the
end of infinity. I heard my mother’s voice
trying to cut through the cartoon.
Heathclose, Heathaway, Heathclose,
Heathaway. It was a religious rave with a
cat strobe and muffled bass of mother’s
voice. (I ran a fever of 105 that day.)

18. Bought myself a gigapet. A duck. Fed
it for awhile. Gave it a bath. Forgot about
it for almost a couple months. One day,
while cleaning, I found a chain and he
was there on the end. Hey, little duck.
Mad freaky, hoppin’ around with his hair
out, squawking diagonal lines. In a
tuxedo.

7.

sidebar!

.times . Then, the first crab pincers of a block. The kernel method print has

no dot and is followed by a string "Odelay!" . The final crab pincers close our

block.

Say aloud each of the parts of speech used below.

exit unless "restaurant".include? "aura"

Like the print method, exit is a kernel method. If you were paying attention

during the big list of keywords, you’ll know that unless is just such a keyword.

The string "restaurant" is clung to by the method include? . And

finally, the string "aura" .

Say aloud each of the parts of speech used below.

['toast', 'cheese', 'wine']. each { |food| print(food.capitalize) }

This caterpillar partakes of finer delicacies. An array starts this example. In the array, three strings 'toast' ,

'cheese' , and 'wine' . The whole array is trailed by a method each .

Inside of a block, the block argument food , travelling down its little waterslide into the block. The method

capitalize then capitalizes the first letter of the block argument, which has become variable food . This

capitalized string is passed to kernel method print .

Look over these examples once again. Be sure you recognize the parts of speech used. They each have a distinct look, don’t

they? Take a deep breath, press firmly on your temples. Now, let’s dissect a cow’s eye worth of code.

4. An Example to Help You Grow Up

Say aloud each of the parts of speech used below.

 require 'net/http'

 Net::HTTP.start('www.ruby-lang.org', 80) do |http|

 print(http.get('/en/LICENSE.txt').body)

 end

The first line is a method call. The method called require is used. A string is passed to the method containing

'net/http' . Think of this first line of code as a sentence. We have told Ruby to load some helper code, the

Net::HTTP library.

The next three lines all go together. The constant Net::HTTP refers to the library we loaded above. We are using the

method start from the library. Into the method, we’re sending a string 'www.ruby-lang.org' and the

number 80 .

The word do opens a block. The block has one block variable http . Inside the block, the method print is called.

What is being printed?

From the variable http , the method get is called. Into get , we pass a string containing the path

'/en/LICENSE.txt' . Now, notice that another method is chained onto get . The method body . Then, the

block closes with end .

Doing okay? Just out of curiousity, can you guess what this example does? Hopefully, you’re seeing some patterns in Ruby. If

not, just shake your head vigorously while you’ve got these examples in your mind. The code should break apart into

manageable pieces.

For example, this pattern is used a number of times:

variable . method (method arguments)

You see it inside the block:

http.get('/en/LICENSE.txt')

We’re using Ruby to get a web page. You’ve probably used HTTP with your web browser. HTTP is the Hypertext Transfer

Protocol. HTTP is used to transfer web pages across the internet. Conceptualize a bus driver that can drive across the internet

and bring back web pages for us. On his hat are stitched the letters HTTP.

The variable http is that bus driver. The method is a message to the bus driver. Go get the web page called

/en/LICENSE.txt .

So where you see the chain of methods:

http.get('/en/LICENSE.txt').body

Since we’ll be getting back a web page from the http bus driver, you can read this in your brain as:

web page .body

And this bit of code:

print(http.get('/en/LICENSE.txt').body)

This code gets the web page. We send a body message to the web page, which gives us all the HTML in a string. We then

print that string. See how the basic dot-method pattern happens in a chain. The next chapter will explore all these sorts

of patterns in Ruby. It’ll be good fun.

So, what does this code do? It prints the HTML for the Ruby home page to the screen. Using an web-enabled bus driver.

5. And So, The Quick Trip Came To An Eased, Cushioned Halt

So now we have a problem. I get the feeling that you are enjoying this way too much. And you haven’t even hit the chapter

where I use jump-roping songs to help you learn how to parse XML!

If you’re already enjoying this, then things are really going bad. Two chapters from now you’ll be writing your own Ruby

programs. In fact, it’s right about there that I’ll have you start writing your own role-playing game, your own file-sharing

network (a la BitTorrent), as well as a program that will pull genuine random numbers from the Internet.

And you know (you’ve got to know!) that this is going to turn into

an obsession. First, you’ll completely forget to take the dog out.

It’ll be standing by the screen door, darting its head about, as

your eyes devour the code, as your fingers slip messages to the

computer.

Thanks to your neglect, things will start to break. Your mounds of

printed sheets of code will cover up your air vents. Your furnace

will choke. The trash will pile-up: take-out boxes you hurriedly

ordered in, junk mail you couldn’t care to dispose of. Your own

uncleanliness will pollute the air. Moss will infest the rafters, the

water will clog, animals will let themselves in, trees will come up through the foundations.

But your computer will be well-cared for. And you, Smotchkkiss, will have nourished it with your knowledge. In the eons you

will have spent with your machine, you will have become part-CPU. And it will have become part-flesh. Your arms will flow

directly into its ports. Your eyes will accept the video directly from DVI-24 pin. Your lungs will sit just above the processor,

cooling it.

And just as the room is ready to force itself shut upon you, just as all the overgrowth swallows you and your machine, you will

finish your script. You and the machine together will run this latest Ruby script, the product of your obsession. And the script

will fire up chainsaws to trim the trees, hearths to warm and regulate the house. Builder nanites will rush from your script,

reconstructing your quarters, retiling, renovating, chroming, polishing, disinfecting. Mighty androids will force your

crumbling house into firm, rigid architecture. Great pillars will rise, statues chiseled. You will have dominion over this palatial

estate and over the encompassing mountains and islands of your stronghold.

So I guess you’re going to be okay. Whatdya say? Let’s get moving on this script of yours?

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ENZ ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

